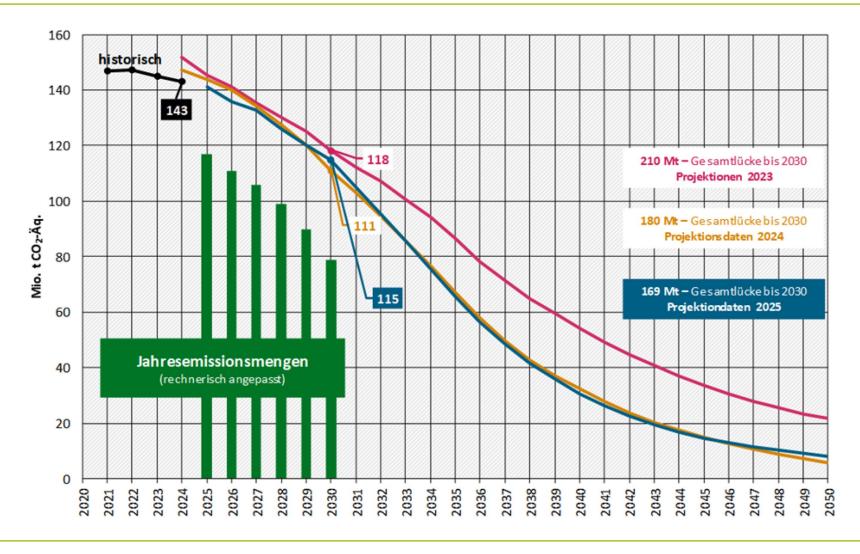
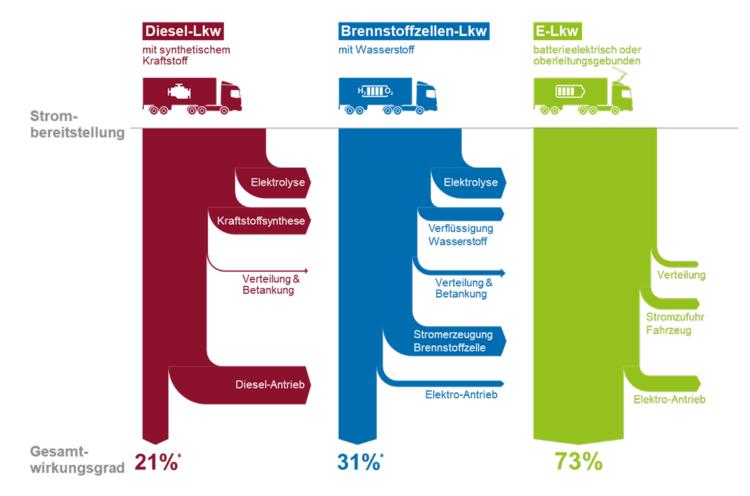


Perspektive Straßenverkehr: Technologiepräferenz für Elektrofahrzeuge


Welche Akteure könnten die Rolle der Innovatoren einnehmen?

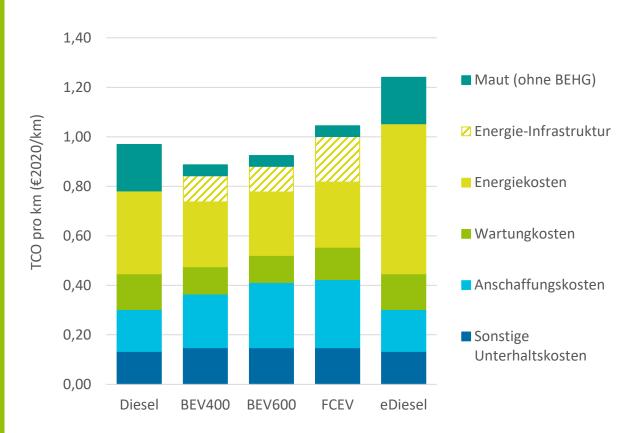
Dr. Katharina Göckeler Workshop "Strategien für eine nachhaltige reFuels-Nachfrage und –Angebotsentwicklung" Online, 30.04.2025

THG-Projektionen im Verkehr: Hoher Handlungsdruck zur Senkung der THG-Emissionen



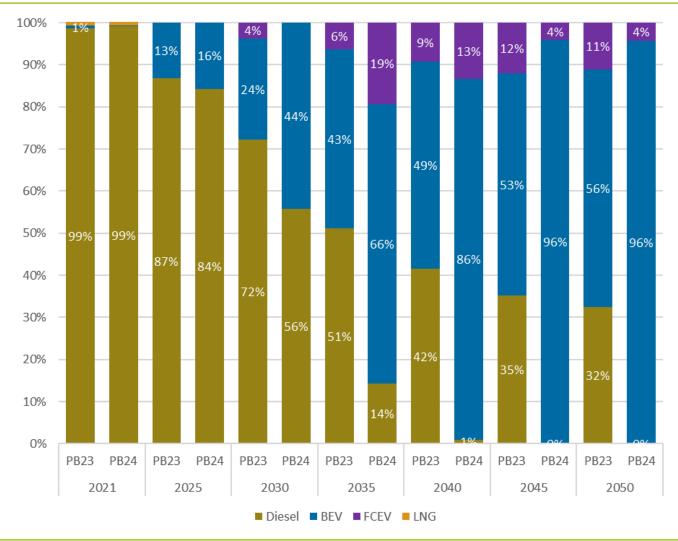
THG-Projektionen im Verkehr: Straßenverkehr dominiert die THG-Emissionen im Verkehr

Kategorie	2021	2025	2030	2035	2040	2045	2050
	Mio. t CO₂-Äq.						
Ziviler Luftverkehr	0,7	1,1	1,0	0,8	0,8	0,7	0,5
Straßenverkehr	142,9	140,6	108,2	64,7	30,1	12,7	4,0
Schienenverkehr	0,9	0,8	0,5	0,5	0,4	0,3	0,2
Schiffsverkehr	1,6	1,6	1,4	1,3	1,2	1,2	1,1
Gesamt	146,1	144,0	111,1	67,3	32,6	14,9	5,9
Jahresemissionsmengen laut Bundes-Klimaschutzgesetz		119,9	81,9				
Nachrichtlich:							
Internationaler Flugverkehr	18,3	32,3	37,8	36,7	37,3	38,3	34,9
Internationaler Schiffsverkehr	3,8	4,2	4,1	3,5	2,7	1,5	0,8

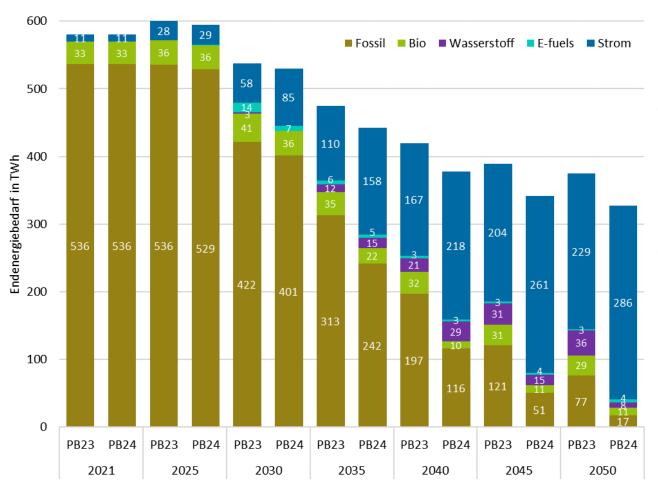

Dekarbonisierung über EE-Strom: Direkte Nutzung mit höchster Effizienz

*bei Erschließung von Effizienzpotenzialen bei Elektrolyse, Kraftstoffsynthese und Brennstoffzelle

Total Cost of Ownership (TCO) zeigen ökonomisches Potenzial für E-Lkw



- "Energie-Infrastruktur": Finanzierung über potenziell hohe Marktpreise an Megawatt-Ladepunkten und Wasserstoff-Tankstellen
- Annahmen Energiepreise (inkl. Infrastruktur):
 - Diesel: 1,2 €/I
 - Strom: 23 ct/kWh (Depot) bis 43 ct/kWh (MW-LP)
 - Wasserstoff: 7,20 €/kg
 - eDiesel: 2 €/I
- Lkw-Maut: Anrechnung externer Kosten über eine CO₂-Komponente und zusätzliche CO₂-Spreizung der Infrastrukturabgabe


Profil: Sattelzug im Jahr 2030, 5 Jahre Haltedauer, 120.000 km Jahresfahrleistung

Mit-Maßnahmen-Szenario (MMS) 2024 – Lkw-Neuzulassungen Lkw-Maut führt zu schnellerer Elektrifizierung

Mit-Maßnahmen-Szenario (MMS) 2024 – Endenergiebedarf im Verkehr Einsatz erneuerbarer Kraftstoffe vorrangig im Flug- und Schiffsverkehr

- Weniger erneuerbare Kraftstoffe (bis 2030) aufgrund veränderter Anrechnung von Strom aus Lkws und Bussen in der THG-Quote
- Veränderte
 Wasserstoffnachfrage
 durch veränderte Lkw Bestandsstruktur

www.oeko.de

Perspektive der Fahrzeughersteller

Vorgehen

- Literaturauswertung
- Ausführliche Experteninterviews (60 bis 90 Min.) im Projekt ELV-LIVE
 - 6 OEMs
 - 2 Experten für Ladeinfrastruktur
 - Vergleich mit ähnlichen Interviews aus dem Jahr 2020 im Projekt StratES
- Workshop mit Interviewpartner zu Herausforderungen und Handlungsempfehlungen im Juni 2024

Begleitforschung zum Einsatz batterieelektrischer schwerer Nutzfahrzeuge im logistischen Regelbetrieb

Gefördert durch:

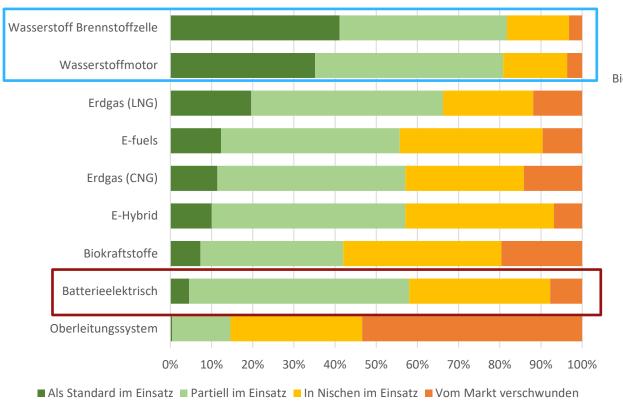
aufgrund eines Beschlusses des Deutschen Bundestages

Perspektive der Fahrzeughersteller: Weitestgehend übereinstimmende Technologieeinschätzung pro E-Lkw

Lkw-Markt

- Die CO₂-Flottenzielwerte sind der zentrale Treiber und Kern der Herstellerstrategien
- Alle OEMs konzentrieren sich auf batterieelektrische Lkw als Haupttechnologie für zukünftige schwere Nutzfahrzeuge
- Rasche Verlagerung der Hauptanwendung von BET vom Regional- zum Fernverkehr erwartet → kurzfristig hohe TCO-Vorteile
- Markteinführung Langstrecken-BET bis 2024/25
- Bis 2030: BET mit größerem Anteil an Neuzulassungen als Diesel-Nutzfahrzeuge
- Ausbau der Ladeinfrastruktur wichtiger für Markthochlauf als Fahrzeugsubventionen und Mautvorteile (OEM-Sicht)
- Stabile Rahmenbedingungen wichtig, um Kunden zu überzeugen

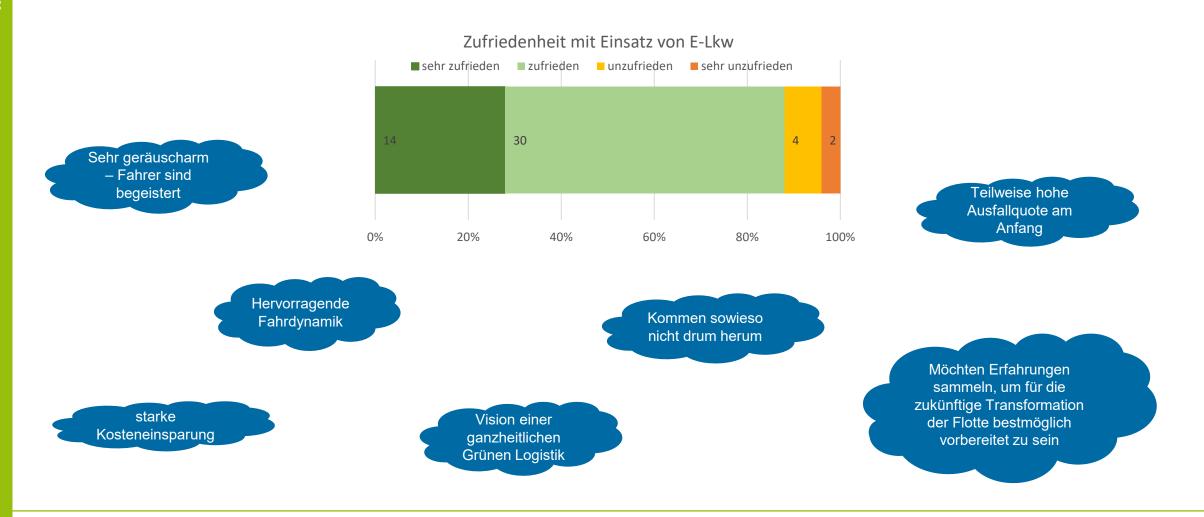
Ladeinfrastruktur und Netzanbindung


- Die Dynamik des Markthochlaufs hängt von der Verfügbarkeit der Ladeinfrastruktur ab
- Der verfügbare Netzanschluss ist der entscheidende Faktor für den Aufbau der Ladeinfrastruktur an verschiedenen Standorten
- Das Laden von Depots ist eine attraktive Anwendung, aufgrund örtlicher Beschränkungen ist die Nachfrage jedoch möglicherweise geringer als zunächst erwartet (~80 %).
- Öffentliches Schnellladen und der Zugang zum Off-Site-Depot-Laden könnten daher frühzeitig für viele Anwendungen relevant werden
- Vorausschauende Planung beim Netzausbau und -anschluss erforderlich

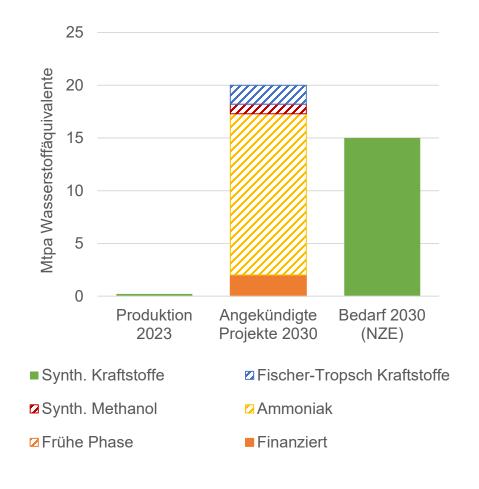
Perspektive der Transportunternehmen: Positive Erfahrungen mit ersten serienreifen E-Lkw bei Anwendenden

Online-Befragung von Transportunternehmen 2021

Technologieeinschätzung im Straßengüterverkehr 2030 (n=219)


Online-Befragung von E-Lkw Anwendenden 2024

Technologieeinschätzung im Straßengüterverkehr 2030 (n=50)



Perspektive der Transportunternehmen: Positive Erfahrungen mit ersten serienreifen E-Lkw bei Anwendenden

Erneuerbare Kraftstoffe: Mittelfristig weiterhin knappe Verfügbarkeit

- Derzeit Produktion in geringfügigen Mengen in Demonstrationsanlagen
- Angekündigte Produktionskapazitäten bis
 2030 bieten Potenziale, allerdings sind nur
 wenige Projekte bereits im Bau oder finanziert
- Schwerpunkt der Projekte liegt auf Ammoniak
- Bedarfe an erneuerbarem Wasserstoff und
 -derivaten für Anwendungen ohne Alternativen übersteigen das Angebot

Fazit

- Die Klimaschutzziele erfordern eine schnelle Dekarbonisierung im Straßenverkehr.
- Elektrofahrzeuge zeichnen sich zunehmend als Haupttechnologie im Personen- und Güterverkehr auf der Straße ab.
- Wesentliche Treiber für die Elektrifizierung sind die CO₂-Flottenzielwerte der EU und darauf aufbauende Strategien der Fahrzeughersteller.
- Die THG-Quote und weitere EU-Quoten bewirken einen Absatz von erneuerbaren
 Kraftstoffen im Luft- und Seeverkehr und in geringfügigen Mengen im Straßenverkehr.
- Erneuerbare Kraftstoffe bleiben mittelfristig knapp und kostenintensiv. Der Einsatz sollte sich auf Anwendungen konzentrieren, in denen Alternativen fehlen.

Vielen Dank für Ihre Aufmerksamkeit! Thank you for your attention!

Haben Sie noch Fragen?
Do you have any questions?

Ihre Ansprechpartner*innen

Dr. Katharina
Göckeler
Senior Researcher

Öko-Institut e.V. Büro Berlin Borkumstraße 2 13189 Berlin

Telefon: +49 405085-312

E-Mail: k.goeckeler@oeko.de

Florian Hacker
Stellvertretender
Bereichsleiter

Öko-Institut e.V. Büro Berlin Borkumstraße 2 13189 Berlin

Telefon +49 30 405085-373

E-Mail: f.hacker@oeko.de